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ABSTRACT 

 

 

 

Potential Treatments for Malformation Associated Epilepsy 

 

By: Olivia M. Bowles 
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Virginia Commonwealth University, 2016. 

 

Advisor: Kimberle M Jacobs, Ph.D.  

Associate Professor, Department of Anatomy and Neurobiology 

 

 

Epilepsy has been previously attributed to either increased excitation or decreased 

inhibition. With this closed frame of mind, modern medicine has been unable to develop 

a permanent treatment against the mechanisms of epilepsy. In order to treat patients with 

intractable seizures, especially those caused by developmental malformations, it is 

essential to understand the entirety of mechanisms that could possibly play a role in the 

abnormal cortical function. 

One such developmental malformation is known as polymicrogyria. 

Epileptogenesis occurs in an area laterally adjacent to this malformation known as the 

paramicrogyral region (PMR). Past studies have narrowed down the potential cause of 

this increased network excitation to a certain type of inhibitory interneuron, the 

somatostatin (SS) interneuron. Additionally, previous studies have shown an increase in 

the mGlu5 receptor on this interneurons in the PMR region only and not in control tissue, 

meaning that targeting these receptors as treatment will not affect normal functioning 

tissue. These results lead to our hypothesis: blockade of the mGluRs will decrease the 
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activity of SS interneurons and thereby prevent the generation of epileptiform activity 

and increased SS output in malformed cortex. 

Utilizing the freeze-lesion model for microgyria in transgenic mice expressing 

Channelrhodopsin optogenetic channels in SS interneurons, we assessed the contribution 

of these SS interneurons in four different animal groups: control or PMR treated with 

either Gabapentin, a current AED (antiepileptic drug), or MTEP, an mGlu5 receptor 

antagonist. We tested the effects of these two drugs on SS interneuron output to 

determine whether they decrease the over activation in the PMR that has been previously 

studied. The following study revealed no correlation between Gabapentin-treated animals 

and a decrease in epileptiform activity. Additionally, no significant difference was seen 

between the MTEP-treated groups in the protocols that were measured.  

  



www.manaraa.com

3 

 

Chapter 1 

Introduction to Epilepsy, Interneurons, Optogenetics, mGluRs, and Possible 

Treatments 

Polymicrogyria (PMG) causes intractable epilepsy, or epilepsy not 

permanently treatable with medication. In order to properly treat intractable seizures, 

one must understand the underlying mechanisms to target. My project focuses on a 

specific receptor, the mGlu5 receptor, as the key in reducing the epileptiform activity 

seen in our freeze-lesion mice that mimic the hyperexcitablilty and histopathology of 

PMG. This project will aid in the search for a specific treatment for intractable 

seizures as opposed to patients having to result to surgery or a continuous rotating 

drug regimen.  

1.1 Epilepsy – general characteristics 

Epilepsy is a very common disorder that affects around 50 million people 

worldwide or 1-2% of the world’s population (WHO, Epilepsy et al. 2005, Varvel, 

Jiang et al. 2014) It has known to be recorded as “the falling disease” as early as 1060 

BC (Varvel, Jiang et al. 2014). In addition, seizures were thought to be the work of 

demons rather than a neurological condition (Varvel, Jiang et al. 2014). In 400 BC, 

Hippocrates was one of the first people to characterize epilepsy as a disorder of the 

brain, but he was not taken seriously. It was not until the early 1900s the first 

antiepileptic drug (AED) was introduced (Varvel, Jiang et al. 2014). Today, it is 

characterized as a chronic neurological disorder with characteristic seizures, or 

abnormal electrical discharges, that can cause changes in emotional and motor activity 

(Fisher and Saul 1997, Fisher, Arzimanoglou et al. 2014). Epilepsy can also cause 

cellular and molecular changes in between seizure activity (Elger 2005). A seizure is 
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characterized as a synchronous over-activation of one or many synaptic pathways 

(Varvel, Jiang et al. 2014). A consistently lowered threshold of one of these pathways 

may produce epilepsy (Varvel, Jiang et al. 2014). Usually, this uncontrolled electrical 

activity is the cause of too little inhibition or an increase in excitation within the 

cortical network (Davies 1995).  

As discussed by Fisher et al (2014), these seizures either involve specific 

systems of the brain, as in the case of partial seizures, or they can be in a restricted 

area and eventually spread, leading to the involvement of multiple cortical and 

subcortical subunits. An epileptic seizure must have the presence or signs of 

symptoms related to excess neuronal activity, or synchronous activity in the brain as 

demonstrated on electroencephalogram or EEG (Fisher, Arzimanoglou et al. 2014).  

Treatment with AEDs or surgery is at least partially effective in approximately 

2/3 of epilepsy patients (Fisher and Saul 1997). When AEDs are ineffective, not 

possible, or not desired, surgery is the last resort. For AEDs with known mechanisms, 

they target ion channels and postsynaptic receptors to enhance the brain’s ability to 

limit the spread of seizures (Alexander & Godwin, 2006;  Fisher & Saul, 1997). AEDs 

have three different modes of action, they either facilitate GABA transmission through 

multiple mechanisms, they can block voltage gated ion channels which reduces 

excitatory transmission, or they have an unknown/other mode of action (Davies 1995). 

All AEDs treat epilepsy after it is diagnosed, but there are no successful strategies for 

prevention of epilepsy for those at risk (Varvel, Jiang et al. 2014).  

In more than 50% of surgery cases, however, seizures are not eliminated 

completely or they are not even significantly reduced (Palmini, Gambardella et al. 
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1994, Olivier, Andermann et al. 1996). If the seizure has no focal region, or a specific 

area where the seizure originates, then surgery is not an option (Fisher and Saul 1997). 

Ben-Ari stated that understanding and treating seizures caused by developmental 

malformations requires knowledge of cortical networks and cellular mechanisms in 

order to determine the mechanisms that are absent or enhanced. With this knowledge, 

it is possible to understand the underlying mechanisms of the hyperexcitability that are 

seen (Ben Ari 2006).  

Even though some patients are treated with AEDs, 40% of patients have 

seizures that are drug resistant or intractable (Fisher and Saul 1997, Alexander and 

Godwin 2006). The reasons for this intractability are not fully known, but 

approximately 25% of the intractable seizures are caused by malformations of cortical 

development (MCDs), according to Leventer (2008). Classification of MCDs is based 

on the developmental steps of cell proliferation, neuronal migration, and cortical 

organization (Barkovich, Guerrini et al. 2012). These classifications span three 

different groups. Group I constitutes malformations secondary to abnormal neuronal 

and glial proliferation or apoptosis. Group II includes malformations that are 

secondary to abnormal neuronal migration. Finally, Group III contains all the 

malformations secondary to abnormal migrational and post migrational development, 

as the process of cortical organization begins before the termination of neuronal 

migration. Lastly, there are still MCDs that are not classified into groups (Kuzniecky 

2015). Of the 25% of intractable seizures attributed to MCDs, 50% of those are 

diagnosed in children (Leventer, Guerrini et al. 2008). In addition to the high 

prevalence in children, as a whole, approximately 75% of patients diagnosed with a 
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MCD will have epilepsy (Leventer, Guerrini et al. 2008). Thus there is a strong 

connection between these errors in development and cortical hyperexcitability.  

Epilepsy associated with MCDs comes about as a result of the abnormal 

presence or absence of neurons or by the faulty positioning of cortical neurons 

(Leventer, Guerrini et al. 2008, Varvel, Jiang et al. 2014). This misplacement or 

absence can result in an imbalance between the excitatory and inhibitory neuronal 

systems which would normally control this epileptiform activity and prevent these 

spontaneous events from occurring (Leventer, Guerrini et al. 2008). In addition, 

malformations associated with errors in development during the formation of the 

cortical plate have an effect on maturation (Squier and Jansen 2010). Developmental 

malformations are therefore the focus of our epilepsy studies because the biology 

underlying the transition of a normal brain to a brain with epilepsy must differ from 

the biology driving seizures in the epileptic brain (Varvel, Jiang et al. 2014).  

1.2 Malformations – Polymicrogyria 

Developmental malformations are more common than previously realized in 

the past, due to the recent advancements in technology such as magnetic resonance 

imaging or MRI. In fact some malformations, particularly PMG, in some cases, 

require the highest current resolution of MRI (at 7T) in order to be identified (De 

Ciantis, Barkovich et al. 2015).  

One such malformation is known as PMG. PMG is a developmental 

malformation that is present when there are multiple small convolutions on the surface 

of the brain (Kuzniecky 2015). PMG is often associated with type II lissencephaly, or 

“smooth brain”  where there is an absence of normal convolutions (Stouffer, Golden et 
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al. 2015). The distribution of PMG greatly varies from diffuse, symmetrical, bilateral, 

asymmetrical or unilateral (Kuzniecky 2015). With the small convolutions come 

underlying laminar abnormalities. Takano discusses PMG is also one of the most 

common MCDs and has different types, unlayered and 4-layered. We focus on the 4-

layered type. In four-layered PMG, the cortex consists of a molecular layer (1st layer) 

and two neuronal layers underneath (Takano 2011). In between the two neuronal 

layers is an intermediate layer that contains few cells and many fibers (Takano 2011).  

It has been previously reported that approximately 85% of patients diagnosed 

with polymicrogyria have seizure disorders (Leventer, Guerrini et al. 2008). As 

mentioned in Leventer et al. (2008), PMG is also a very common additional 

component with other disorders such as chromosomal deletion syndromes, metabolic 

disorders, and multiple congenital anomaly syndromes. Additionally, PMG , unlike 

other MCDs has non-genetic causes that are recognized (Stouffer, Golden et al. 2015). 

The incidence of epilepsy with PMG is very high (Kuzniecky, Andermann et al. 

1993); the susceptibility of seizures most often peaks during brain growth and 

synaptogenesis during childhood in humans, suggesting that the immature brain is the 

focus for the initiation of the epilepsy (Rakhade and Jensen 2009, Takano 2011). The 

seizures associated with PMG tend to be intractable in about 50% of the cases of 

patients, and also tend to show up in childhood (Leventer, Guerrini et al. 2008). This is 

important because seizures can be caused by different factors depending on the age of 

a person (Fisher and Saul 1997). The young brain is different from the adult brain in 

many ways; the young brain is not a smaller adult brain. We cannot get the 
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information we need from adult brains in order to elucidate the underlying 

mechanisms of developmental epilepsy (Ben Ari 2006).  

In our lab, we use the freeze-lesion (FL) model due to its ability to accurately 

replicate the histopathology and hyperexcitability of the microgyria associated with 

seizures. We specifically look for mechanisms in development because we want to 

ultimately identify the one(s) that produce the onset of this hyperexcitability.  

Freeze lesion model of microgyria  

PMG has been modeled by a number of insults to the neonatal cortex, 

including direct ibotenic acid injection, stabbing punctures, and most commonly, a 

neonatal transcranial FL.  In the normal developing brain, the cortical layers form in 

an inside-out progression, with the bottom layers forming first and the upper layers 

following.  The model used for experiments described in this dissertation is the 

neonatal FL, performed on postnatal day (P) 1 in mouse. Lesions are done on P1, as 

opposed to P0, because lesions at P1 are more likely to cause the chronic 

hyperexcitability (Jacobs, Hwang et al. 1999). The lesion produces a focal loss of 

neurons within the cortical plate at the time of the lesion. At P1 in mouse, this is some 

of layer IV, and all of layers V and VI.  The superficial layer neurons will migrate into 

the cortical plate on subsequent days.  For this model, mice are anesthetized and a 

frozen probe is placed onto the skull overlying somatosensory cortex for a few 

seconds, creating a focal loss of the neurons present in the cortical plate at that 

developmental age (Jacobs and Prince 2005) (Figure A). Thus, this FL process 

mimics a fetal stroke or direct injury resulting in focal loss of neurons. In addition, this 

FL model shows epileptiform activity consistently and is therefore a useful model for 
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study of the underlying mechanisms of epileptogenesis associated with polymicrogyria 

(Jacobs, Hwang et al. 1999).  

It has been shown that these FL animals have intrinsic hyperexcitability in the 

area adjacent to the lesion. The cortex adjacent to the microgyrus, from which the 

epileptiform activity is most easily evoked is known as the paramicrogyral region or 

PMR. The cellular changes that cause this increased excitation seen in this model are 

unknown, however, the knowledge of these mechanisms will help provide special 

Figure A. Freeze lesion model of microgyria. 

A) Freeze probe diagram, modified from 

Humphreys, Rosen et al. (1991). Probe was 

placed in dry ice to cool methyl butane. B) 

Although previous studies in rat utilized a 

unilateral lesion, for these studies bilateral 

lesions over somatosensory cortex were made 

in mice. C) Probe placement results in focal 

death of cells present in the cortical plate (deep 

layers). D) Over the next 5-7 days normal 

processes remove these cells. E) As a result of 

lost cells a sulcus forms in the normally 

lissencephalic rodent cortex. F) Normal 

migration of superficial layer cells into the 

cortex continues after the lesion. G) Example of 

a Nissl-stained coronal section through 

somatosensory cortex containing the induced 

microgyrus with abnormal lamination and the 

abrupt transition (gray dashed outline) to 

normally laminated 6-layered cortex. This 

example is from a rat. Figures C-G by KM 

Jacobs. 
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targets for therapeutic treatments (Andresen, Hampton et al. 2014). Though the 

mechanisms are unknown, field epileptiform activity has been evoked in the PMR, 

laterally adjacent to this malformation. When connections from the PMR region are 

severed from the microgyrus, the hyperexcitability seen in the PMR region persists 

(Jacobs and Prince 2005). Afferents avoid the microgyrus and instead, relocate to the 

PMR (Rosen, Burstein et al. 2000) (Figure B); this is what leads to increased 

excitatory connectivity in this area (Jacobs, Kharazia et al. 1999, Jacobs and Prince 

2005). Increased excitatory afferents must be selective to certain neurons or other 

components of the circuit in order to overcome the inhibition as with increased 

excitation among pyramidal neurons (Jacobs, Hwang et al. 1999). Is it just excitatory 

afferents causing this hyperexcitability?  

Network hyperexcitability was originally identified with field potential 

recordings in ex vivo slices. Nemes, et al. discussed how pro-epileptic lesions are a 

predisposing factor for the development of chronic epilepsy if triggered by an event 

such as ischemia or a seizure. The presence of hyperexcitability increases a patient’s 

Figure B. Thalamocortical excitatory 

afferents avoid the malformed region 

and project instead to the PMR. In the 

cartoon at the top, the normal focal 

projections can been seen. In the lower 

cartoon depicting the malformed cortex, 

the thalamic afferents that should have 

gone to the malformed area instead find 

the normal layer IV in the adjacent 

(abnormal) region. This creates 

additional excitatory afferents in this 

PMR region. This has been 

demonstrated both anatomically and 

functionally.  Figure by KM Jacobs. 
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chance of developing epilepsy. This is why stopping the hyperexcitability before 

seizures occur is key. While the network epileptiform activity begins abruptly and is 

severe at P12, the functional increase in excitatory activity to layer V pyramidal 

neurons begins on P9.  Thus some other mechanism likely contributes to the initiation 

of the epileptiform activity. This led us to look at inhibitory interneurons as the cause.  

In the PMR region, there are more glutamatergic synapses to layer V 

pyramidal neurons and interneurons (Jacobs & Prince, 2005). This increased 

glutamatergic signaling onto certain subtypes of interneurons is important and could 

affect the excitability of the PMR region (Takano 2011). In the PMR, others from our 

lab have previously shown that layer V pyramidal neurons receive an increase in these 

excitatory connections. The increase in excitatory synapses to excitatory neurons 

occurs at P10, yet we do not see epileptiform field potentials until P12 (Figure C). 

This suggests that there are likely other abnormalities involved in initiating the 

epileptiform activity.  

Figure C. Timing of 

onset of epileptiform 

activity. Activity was 

recorded as field 

potentials from ex vivo 

rat slices. Survival age 

is postnatal day. Note 

that before P12 (purple 

arrow) only normal 

short latency events 

were evoked. Figure 

modified (colorized) 

from Jacobs, Hwang et 

al. (1999). 
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Previous recordings from inhibitory cells showed that inhibitory cells of the 

PMR receive nearly three times the excitation that controls have. What is the cause of 

this excitation? The early susceptibility seen that does not coincide with the increased 

excitation onto pyramidal neurons may be caused by inhibitory neuron changes or 

changes with their connectivity (George and Jacobs 2006, George and Jacobs 2011, 

Bell and Jacobs 2014). In addition, since the onset is delayed, this is an important 

period of latency to study in order to determine the mechanisms of epilepsy, especially 

since seizures alter many processes such as physiological processes that can worsen 

hyperexcitability (Bell and Jacobs 2014).  

There are a few known mechanisms that can contribute to epileptogenesis and 

increased hyperexcitability in the FL model. There are thalamocortical afferents that 

should have projected to malformed region that instead project to the PMR that could 

contribute but not initiate the hyperexcitability. In addition, there are increased AMPA 

and NMDA receptors, and decreased GABA receptors. There is increased excitatory 

input to layer V pyramidal neurons which is an important contributor. Lastly, there are 

GABAergic neurons decreased in number.  This could be an important contributor to 

network hyperexcitability.  After the FL, neurons migrate from the cortical plate and 

form a bridge-like structure. This structure maintains an early Cl- homeostatic 

environment which causes GABA to be depolarizing, promoting the formation of this 

disorganized network and also promoting the abnormal migration of neurons and 

could affect the hyperexcitability seen in the PMR (Shimizu-Okabe et al., 2007). This 

depolarizing effect of GABA is essential in order for neurons and interneurons to 



www.manaraa.com

13 

 

migrate (Wang, Kumada et al. 2012). The effect of GABA can affect not only effect 

excitatory neurons, but can also effect inhibitory neurons.  

1.3 Inhibitory interneuron subtypes 

In the cortex, 70-80% of the neocortical neurons are excitatory pyramidal cells, 

the other 20-30% are inhibitory interneurons (White 1989). There are many types of 

GABAergic interneurons that are distinguishable by their morphology/axonal 

arborization because certain interneurons are specialized at targeting different domains 

of neurons, different cortical columns, or even different layers of a column (Markram, 

Toledo-Rodriguez et al. 2004). Inhibitory neurons have certain characteristics that 

make them distinguishable from pyramidal neurons such as size, soma shape, action 

potential firing pattern, and laminar layer location. Interneurons can target other 

interneurons with inhibitory synapses onto other cells, usually occurring at the 

dendrites, just as for pyramidal neurons.  

Inhibitory interneurons have many functions, they must balance the excitation 

on different regions of a neuron, and only about 16% of pyramidal neuron synapses 

are from inhibitory interneurons (Markram, Toledo-Rodriguez et al. 2004). At certain 

inhibitory synapses there is less depression compared to excitatory synapses, allowing 

some interneurons to fire at higher frequencies (Galarreta and Hestrin 1998, Wang, 

Gupta et al. 2002). Inhibitory interneurons must be activated at the right moments, 

they must constantly be in balance, or else the network can become faulty. Any 

interruption of the normal balance can lead to disruptions in the normal functioning of 

the network.  
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The balance between excitation and inhibition is important when discussing 

inhibitory cells because in the end, these interneurons control the synchronization at 

certain frequencies (Konig, Engel et al. 1996, Markram, Toledo-Rodriguez et al. 

2004). The diversity seen in inhibitory interneurons is important for the maintenance 

of the brain’s connections. This regulation is important to guarantee the proper 

processing of stimuli in a given brain region in an unpredictable and ever changing 

environment (Markram, Toledo-Rodriguez et al. 2004).  

Inhibitory interneurons can be differentiated in many different ways, including 

staining methods and intrinsic firing properties (Connors and Gutnick 1990, 

Kawaguchi and Kubota 1995, Kawaguchi and Kubota 1996). Among peptides in the 

neocortex, vasoactive intestinal peptide (VIP) and somatostatin (SS) staining are 

expressed in different GABAergic cells (Demeulemeester, Vandesande et al. 1988, 

Rogers 1992, Kubota, Hattori et al. 1994, Kawaguchi and Kubota 1996). Parvalbumin 

(PV) stained interneurons are immunoreactive for the calcium binding protein PV. 

These three subtypes are the prominent inhibitory interneurons. SS interneurons have 

different roles in the cortical circuit (Kawaguchi and Kubota 1996). SS are mostly 

low-threshold spiking (LTS) neurons and PV interneurons are mostly fast-spiking (FS) 

interneurons (Markram, Toledo-Rodriguez et al. 2004). FS interneurons have lower 

input resistances and tend to spread horizontally and control horizontal activity 

(Gonzales-Burgos, Krimer et al. 2005). SS interneurons are found in the hippocampus, 

all throughout the neocortex, and tend to be more modulatory. They form synapses on 

the distal dendrites of pyramidal cells and spread vertically rather than horizontally 

(Kawaguchi and Kubota 1996).  
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Rosen et al. (1998) demonstrated that the numbers of PV-expressing neurons 

are decreased focally in deep layers, but another study that counted all GABAergic 

neurons showed there was no difference.  In normal cortex, PV interneurons are the 

stronger inhibitory cells (Hu, Gan et al. 2014), however, in the PMR, there are fewer 

PV interneurons, and they seem to no longer be the main inhibitory cells (George and 

Jacobs 2011). The Jacobs’ lab has used stereology to count numbers of SS, PV and 

VIP neurons. Within and surrounding the malformation, PV neuronal counts are down 

while SS and in some cases VIP neuronal counts are increased. We have hypothesized 

that the PV neurons are more vulnerable to the hypoxic insult while the SS neurons are 

resilient. It may be that homeostatic attempts to maintain cortical inhibition allow PV 

neurons and/or synapses to be replaced by SS neurons and/or synapses. This could 

account for SS interneuron increased strength within the PMR. All of these data 

together suggest that the interneuron subtypes are differentially affected.  

GABAergic interneurons contain many mGluRs that act on then by 

depolarizing them directly. The result of this is greater inhibition, wherever these 

synapses are made, which is on both excitatory and inhibitory interneurons (Zhou and 

Hablitz 1997). In addition, recent studies show that LTS interneurons, due to their 

electrically coupled networks, are suited to modulate cortical excitability (Gibson, 

Beierlein et al. 1999). LTS neurons in the PMR have been shown to have an increased 

maximum frequency when compared to LTS neurons in control tissue (George and 

Jacobs 2011). Additionally, a decreased firing frequency was seen in FS cells as 

compared to the LTS interneurons (George and Jacobs 2011).  Since the interneuron 

subtypes are maintained in the PMR, this suggests that differentiation normally 
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proceeds once the lesion is induced. It could also mean that the mechanisms 

underlying cell type definition are complete in layer V prior to lesion time (George 

and Jacobs 2011). The interneuronal subtypes can be affected in different ways in both 

animal models and in human tissue so these interneurons are useful to study  

(DeFelipe, Garcia et al. 1993, Buckmaster and Dudek 1997, Rosen, Jacobs et al. 1998, 

Powell, Campbell et al. 2003, Trotter, Kapur et al. 2006). We are interested in these 

interneurons because we believe that these inhibitory cells are the cause of the 

epileptiform activity seen in our model. We have previously shown via whole cell 

patch clamp recordings that the SS interneurons within the PMR receive more 

excitatory synaptic input and fire action potentials at higher maximal rates compared 

to control SS interneurons. This increased strength of these intracolumnar interneurons 

may synchronize excitatory activity within a column. In addition, increased strength 

from SS to other interneurons may produce network disinhibition. Since these 

Figure D. Changes in cortical inhibitory subtypes after 

malformation. In normal (control) cortex, the PV interneurons 

project horizontally and provide a powerful suppressant of 

horizontally (intercolumnar) excitatory activity. In contrast, the 

SS interneurons normally project intracolumnarly and provide 

weak or modulatory inhibition onto the dendrites of both 

excitatory and inhibitory neurons. In malformed cortex, 

specifically within the PMR, we hypothesize SS neurons are 

strengthened in function. This is supported by the increased 

excitatory synaptic activity they receive, the increased maximal 

firing and increased output (described below) determined 

optogenetically. This increased function of the inhibition may 

serve to both synchronize excitatory activity within a column and 

produce disinhibition due to the contacts onto PV interneurons. 

Reduced functioning of PV interneurons may then allow the 

spread of this synchronized excitatory activity across the cortex 

in the form of epileptiform activity. 
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interneurons project vertically, rather than horizontally like the PV interneurons, they 

synapse in multiple layers simultaneously. Since these vertical SS synapses are usually 

modulatory, they normally do not create robust synchrony. It has also been shown that 

in the presence of mGluRs, SS interneurons fire in an oscillatory manner and that 

activity can cause an increase in synchrony among the nearby pyramidal neurons 

(Connors and Gutnick 1990). It is the combination of these two normal processes 

(intracolumnar projection and synapses onto other inhibitory interneurons) with the 

strengthening of their function in the PMR that has led us to hypothesize that the PMR 

has an increase in intracolumnar synchrony. Overall, we hypothesize that PV 

interneurons that are normally strong become weakened in the PMR, while SS 

interneurons that are normally weak or modulatory become strengthened in the PMR 

(Figure D). 

There are two ways SS interneurons may be producing network excitation with 

their inhibitory synapses. They synapse onto the PV interneurons, and since they are 

inhibitory cells, we hypothesize more strongly in the PMR, they inhibit these 

inhibitory cells, which could lead to excitation. Secondly, since SS interneurons 

project vertically, they cause the synchronous inhibition and firing of pyramidal 

neurons. Normally, the SS interneurons are not powerful, but if they become very 

powerful, they can act to synchronize all activity, providing a jump start to 

epileptiform activity. It is important to localize the cause of this increased excitation to 

be able to better target neuronal and receptor subtypes for drug development (Jacobs, 

Hwang et al. 1999). What about these SS interneurons makes them more powerful in 
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the PMR? While previous studies have looked at inputs to these neurons, this project 

looks at the output from these specific subtypes utilizing optogenetics.  

1.4 Controlling inhibitory interneuron subtypes selectively 

Optogenetics is optical methods combined with genetic methods in order to 

achieve gain or loss of function of certain events on specific cells in living tissue 

(Deisseroth 2011). Optogenetics allows for targetable control tools that do three 

things: deliver effector function, respond to light, and enable technology for: 1) 

targeting the control tools in cells of interest; 2) electrical recording of evoked activity 

or other analysis; and 3) delivering light into the tissue that is under investigation 

(Deisseroth 2011). Neurons can be specifically controlled when they express proteins 

that are sensitive to light (LaLumiere 2011). Fenno et al. (2011) mentions that with 

this technology, we have been able to selectively mark SS interneurons with 

Channelrhodopsin (ChR), enabling us to activate these specific interneurons with blue 

light.  Type I rhodopsin combines light sensation and ion flux into one protein 

encoded by one gene (Fenno, Yizhar, & Deisseroth, 2011). Fenno et al. (2011) states 

that with light stimulation, the channel changes conformation and opens. In the 

absence of further light stimulation, it changes back to the closed conformation. 

Transgenic mice, as opposed to viral transfection of ChR, allow for greater control 

over transgene expression because of the use of large promoter fragments (Fenno, 

Yizhar, & Deisseroth, 2011). The optogenetic system dependent on Cre allows for a 

direct look at the neural activity of specific neuronal populations and their relationship 

with animal behavior (Fenno, Yizhar et al. 2011). In order to achieve the ChR 

expression on SS interneurons, we crossed Floxed stop codon on a ChR-2 expressing 
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gene in YFP reporter female mice with Cre recombinase in the 3' UTR of the 

somatostatin locus males. This allowed for the selective activation of the SS 

interneurons with blue light. We have recently shown with optogenetics that SS 

interneurons of the PMR produce more output than the same interneuron subtype in 

control (Figure E). We have also shown that epileptiform fields can be generated with 

light activation of SS interneurons alone (Figure F). This suggests that reducing the 

activity of SS interneurons may be an effective way to prevent epileptiform activity 

associated with microgyria. We can achieve this via control of metabotropic glutamate 

receptors. This is beneficial because the effectiveness of therapy is limited in about 

30% of all epilepsy cases, and these mGluRs are very good targets (Loscher, Dekundy 

et al. 2006).  

 

 

 

 

 

 

 

Figure E. IPSC produced by selective, optogenetic activation of SS interneurons. 

After mating Cre-SS mice with floxed-ChR mice, ChR is present selectively in SS 

interneurons (although there may be ~10% error (Hu, Cavendish et al. 2013)). Whole 

cell patch clamp recordings were made in layer V pyramidal neurons. Blue light 

(bLED) was applied through the 60X objective above the recorded neuron to activate 

the ChR in SS interneurons. Data shown is from the work of Nicole Ekanem in the 

Jacobs lab. A preliminary form of this data was published in the Masters’ thesis of 

Ekanem (2015). This data will serve as the untreated form to which the studies 

presented in the current Masters’ thesis will be compared. 
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The mGluRs are members of the G-protein coupled receptor super family 

(GPCRs) (Jong, Sergin et al. 2014). GPCRs are the largest members of membrane 

proteins; they also mediate a variety of cellular processes (Rosenbaum, Rasmussen et 

al. 2009). They are characterized by having seven helical membrane spanning regions 

(Rosenbaum, Rasmussen et al. 2009) and can interact with many second messengers. 

They can also be hindered by many different proteins. On the cell surface, mGluRs 

have GPCR independent signaling through β-arrestin and GPCR dependent signaling 

(Jong et al., 2014). β-arrestin blocks the receptor/G-protein interaction. This is an 

adapter protein that targets GPCRs for clathrin mediated endocytosis (Luttrell and 

Figure F. ChR-SS evoked epileptiform field potentials from ex vivo slices 

containing an induced microgyrus. At the arrow a 2 msec long pulse of blue light 

was applied through the 60X objective centered on layer V within the PMR (~0.25 

mm adjacent to the sulcus) in order to activate the ChR selectively genetically 

inserted in SS interneurons. Field potential recordings were made within layer V in 

the center of the applied light. The aCSF bath contained a low level (0.02 mM) of 

the GABAA receptor antagonist, Gabazine, in order to increase network excitability. 

This epileptiform field was not obtained from control slices under the same 

conditions, suggesting that only within the malformed cortex can activation of 

inhibitory interneurons produce this network hyperexcitation. These data collected 

by Weston, Ekanem and Jacobs and originally published as part of Nicole Ekanem’s 

Masters’ thesis (2015). 
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Lefkowitz 2002). The three main functions of β-arrestin are to aid in GPCR coupling 

efficiency, to sequester GPCRs, and to downregulate/re-sensitize GPCRs (Luttrell and 

Lefkowitz 2002). It can also recruit signaling proteins to GPCRs that are agonist 

occupied (Luttrell and Lefkowitz 2002). The mGluRs can act through phospholipase C 

(PLC) or adenylate cyclase (AC)  by coupling with GPCRs directly to ion channels or 

to second messenger cascades (Szydlowska, Kaminska et al. 2007).  

There are 8 different groups of mGluRs that are classified into three groups 

based on homology, pharmacological profile, and coupling to intracellular pathways 

(Lujan, Shigemoto et al. 2005). The three 3 different subgroups of mGluRs are named 

after their agonists.  

Group I mGluR modulates the inhibitory interneurons. Group I is made of 

homomeric receptors containing either subunit 1 or subunit 5 and are thus referred to 

as mGluR5 and mGluR1. Most agonists are not selective for mGluR1 or mGluR5, but 

there are very good antagonists that are selective. My thesis focuses on these Group I 

mGluRs, which are excitatory postsynaptic receptors (Jong, Sergin et al. 2014). Group 

I mGluRs are proconvulsive by increasing membrane excitability and are excitatory 

receptors that enhance neurotransmitter release, regulate inhibitory glutamate 

receptors (iGluR) responses, and control many depolarizing currents (Alexander & 

Godwin, 2006). Group I mGluRs are modulatory and act slowly via their G-protein 

and second messenger involvement (Alexander & Godwin, 2006). In addition, they 

are positioned in many areas that are only active under high neuronal activity 

conditions. The mGluR1 and mGluR5 null mice show no seizure behaviors 

(Alexander and Godwin 2006).  
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The mGluR5 are prominent in areas involved with emotion, motivation, 

learning, and memory, and also play a large role in many disorders and diseases, 

including epilepsy (Jong, Sergin et al. 2014). This receptor is a great target because it 

has been shown to be necessary for induction of epileptiform activity (Wong, Bianchi 

et al. 2005). As mentioned in Jong et al. (2014), it acts through Gq/11 and regulates 

cell function via transcriptional profile changes and modulating translation of dendritic 

mRNAs. It also has an orthosteric binding site on its cytosine rich domain and has 

allosteric binding sites that when bound by drug, decrease the activity of the main site 

or can have a neutral effect. Unlike mGluR1, mGluR5 does not experience ligand bias. 

Ligand bias refers to when a ligand keeps a unique conformation that triggers either a 

G-protein dependent or independent pathway. Intracellular signaling is present and is 

thought to be through the actions of β-arrestin. Intracellular signaling has been shown 

to be an evolutionarily conserved feature and has been shown in C. elegans and plants, 

suggesting that it must play some important role. Intracellular GPCRs can regulate 

many functions such as inflammatory responses, proliferation, and survival. For 

intracellular GPCRs, there are two uptake systems: through Na+ dependent excitatory 

AA (amino acid) transporters or via a cystine/glutamate exchanger (Jong, Sergin et al. 

2014).  

The mGluRs that are present in the postsynaptic membrane tend to mediate 

membrane properties via second messenger interactions, and when they are present on 

the presynaptic terminal, they aid in synaptic vesicle release (Alexander & Godwin, 

2006). Targeting this mGluR5 receptor could control glutamatergic signaling due to its 

modulatory functions for ongoing activity without interfering with the functioning of 
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ionotropic glutamate receptors (iGluRs) (Alexander & Godwin, 2006). It is thought 

that Group I mGluRs are unattractive targets because mice with a null mutation for 

mGluR1 or mGluR5 showed a disruption in cerebellar motor function and long term 

potentiation (LTP) (Alexander and Godwin 2006). These observations, however, were 

observed in normal, non FL animals. Previous work in our lab has shown the mGluR5 

is enhanced in its expression and in its activity in the PMR region in our FL model 

relative to its expression and function in control cortex (Figure 1.43A).  

In previous lab studies, antagonists targeting this receptor have been shown to 

affect LTS but not FS cells when recordings were taken in ex vivo slices in normal 

cortex. In the PMR, LTS neurons respond more to DHPG, a Group I mGluR agonist, 

than control neurons did (Figure H). In addition, the response to DHPG is only via the 

mGluR1 receptor in control, but the response in PMR is both mGluR1 and mGluR5. 

Targeting of the mGluR5 receptor will therefore be less likely to interfere with the 

Figure G. Expression of mGluR5 is increased within PMR compared to control 

cortex at both P16 and P2. Left panel: Example Western Blot data for mGluR5 

(subsequently normalized to b-Actin) for the PMR (1 mm circle of tissue through 

cortex taken ~0.5 to 1.5 mm lateral to the sulcus, in homologous control cortex, at ~ 

2.5 to 3.5 mm lateral to the sulcus (Lesion far) and in homologous control cortex. 

Right panel: Expression was quantified by digital measurement of the intensity from 

film exposed to the radioactive blots (NIH’s Image program). * = t-test, p< 0.05. 
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normal functioning tissue and hopefully only target the abnormal areas. We believe 

that the enhancement of this receptor on SS interneurons is the cause of the 

epileptiform activity seen in the FL model. We hypothesize that blocking these 

mGluR5 receptors will lead to a decrease in the excitation seen in the PMR region of 

our FL animals by decreasing the output of these SS interneurons. Not only do we 

hypothesize that this will inhibit the epileptiform activity, but we hypothesize that it 

will aid in other developmental disorders that have epilepsy as a co-morbidity. Since it 

has been shown that mGluR5 is increased in expression as early as P2 (Figure G), 

early treatment is suggested. To test this hypothesis, Gabapentin (GBP), a current 

antiepileptic drug (AED), and MTEP, an mGluR5 antagonist, will be used on PMR 

and control animals.  

 

 

 

 

Figure H. Effect of local application of mGluR1/mGluR5 

agonist DHPG (0.01 mM) on IPSCs recorded in layer V 

pyramidal neurons of control (yellow) and PMR (purple) 

cortex. In control neurons, DHPG cause nearly a doubling 

in the frequency of IPSCs, while in the PMR it caused more 

than a tripling of the IPSC frequency. Numbers of recorded 

neurons shown lower part of the bars. * = t-test, p< 0.05. In 

additional experiments it was demonstrated that bath 

application of an mGluR1 antagonist prevented the 

increased IPSC frequency associated with local DHPG in 

controls but not in the PMR. Under these conditions, bath 

application of an mGluR5 antagonist eliminated the 

increase in the PMR. Work from George and Jacobs. 
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1.5 Potential treatments for malformation-associated epileptiform activity 

GBP will be used to test whether it can block the early development of 

epileptiform activity, as well as whether it changes the increased output from SS 

neurons. It is a current anticonvulsant that has structural analogy to GABA (Kim, 

Chang et al. 2009). It can be administered at therapeutic doses, unlike other AEDs that 

have to be slowly introduced into the system (R. Fisher & Saul, 1997). GBP has a lack 

of drug interaction, is cleared by the kidney, and exhibits minor side effects compared 

to most anticonvulsants (R. Fisher & Saul, 1997). In addition, GBP has not been 

shown to have any long term effects during development (Martin, McClelland et al. 

2002). On the other hand, it does have a short-half life and is mainly used as an add-on 

medication to other anti-seizure medications (Fisher and Saul 1997). GBP blocks the 

influx of calcium into neurons (Traa, Mulholland et al. 2008 ) by blocking the 

interaction of TSP and α2δ-1, a calcium channel subunit (Figure I). This is the 

receptor for TSP mediated synaptogenesis (Eroglu, Allen et al. 2009, Andresen, 

Hampton et al. 2014). TSP 1/2 is expressed during the postnatal period when many 

excitatory synapses are forming. TSP is not present in the adult brain when excitatory 

synapses are greatly reduced (Eroglu, Allen et al. 2009). α2δ-1 is an accessory subunit 

of voltage gated calcium channels and aids in membrane trafficking (Andresen, 

Hampton et al. 2014), affects the voltage dependence of activation, and also affects the 

increase in current amplitude activation and inactivation kinetics (Arikkath and 

Campbell 2003). These channels can also influence other channels (Andresen, 

Hampton et al. 2014). GBP inhibits voltage gated calcium channel (VGCC) trafficking 

and directly inhibits calcium currents, this causes GBP to exert inhibitory effects on 

intracellular α2δ subunits (Hendrich, Tran Van Minh et al. 2008). All in all, α2δ-1 
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mediates important functions physiologically and the loss of this subunit can have 

severe consequences on functions relying on calcium channel trafficking and calcium 

currents (Arikkath and Campbell 2003). As mentioned in Andresen et al. (2014), this 

subunit’s role in synaptogenesis, however, is independent of the calcium channel. 

Treatment with GBP for inflammation such as in multiple sclerosis prevents injury-

induced excitation as well as a decrease in the amount of reactive astrocytes. It also 

decreased excitatory input onto layer V pyramidal neurons when used as a treatment in 

the FL model. GBP seems to eradicate most of the pathologies that are associated with 

the FL model, such as hyperexcitability, both in vivo and in vitro (Andresen, Hampton 

et al. 2014). Even though GBP prevents formation of excitatory synapses in vitro and 

in vivo, it does not affect already formed synapses; since there is a treatment window 

of 1 week that it is effective (Eroglu, Allen et al. 2009). It is unknown at this point 

whether GBP affects interneuron function.  

Figure I. Gabapentin blocks the interaction of thrombospondin and a2d-1 calcium 

channel subunit, thereby preventing excitatory synapse formation. Figure from Stahl, S. 

et al. (2013).  
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When mGluR5 is expression is enhanced, an antagonist could be used (Wong, 

Bianchi et al. 2005) to reduce activity to normal levels. This is why we chose to test 

MTEP, an mGluR5 antagonist as a potential treatment for the epileptiform activity 

occurring in the PMR. The mGluR5 produce effects through a number of intracellular 

signaling pathways (Figure J). The mGlu5 receptors play a role in proper 

development, because if it is knocked out, barrels do not form due to interruption of 

the mGlu5 signaling through PLC-β1 (Hannan, Blakemore et al. 2001).  A barrel is a 

specific anatomical unit in layer IV that represents an individual whisker (Woolsey 

and van der Loos 1970). These barrels make up a somatotopic map in the primary 

somatosensory cortex (Petersen 2007). Barrels allow for the delineation of functional 

organization, plasticity, and development (Petersen 2007). When sensory information 

is received, it is processed within the barrels depending on the whisker-related 

behavior (Petersen 2007).  As previously stated, our model shows an excess of the 

mGluR5 receptor in PMR tissue as early as P2. There are other mGluR5 antagonists, 

such as MPEP that have been previously used. We chose MTEP over MPEP because 

MTEP has been shown to have a greater selectivity for the mGluR5 receptor and is 

also more highly selective for mGluR5 without having effects on other mGluR 

subtypes as compared to MPEP (Colmers, Lukowiak et al. 1987, Lea, Movsesyan et 

al. 2005, Domin, Kajta et al. 2006, Lea and Faden 2006). Additionally, MTEP has 

shown to be more potent in vitro and in vivo (Szydlowska, Kaminska et al. 2007). 

MPEP has been shown in rodents and in Xenopus laevis oocytes expressing rat AMPA 

receptors to affect both AMPA and NMDA receptors (Gasparini, Lingenhohl et al. 

1999, Olive, McGeehan et al. 2005, Lea and Faden 2006). MPEP has also been known 
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to have electrophysiological effects on subtypes of NMDA receptors and kainate 

receptors (Lea and Faden 2006). MTEP has been shown to be effective at low doses 

and also does not have an effect on NMDA receptors, AMPA receptors, or kainate 

receptors (Cosford, Tehrani et al. 2003, Slassi, Isaac et al. 2005, Lea and Faden 2006, 

Loscher, Dekundy et al. 2006, Nagal, Greco et al. 2015). In addition, as discussed in 

Nagal et al., MTEP has a higher potency in human cloned receptors as compared to 

MPEP. It has also been shown to penetrate the blood brain barrier well. At 

behaviorally active doses, MTEP produces complete occupancy of the mGluR5 

receptor, and based on in vitro affinity, also produces brain free concentrations high 

enough to occupy the receptor (Nagal, Greco et al. 2015). Together these data suggest 

that blockade of mGluR5 receptors may be an effective means to reducing 

epileptiform activity associated with microgyria. We expect that chronic blockade will 

Figure J. Intracellular 

signaling pathways 

activated by mGlu5 

receptors. Pink X shows 

the expected effect of 

blocking with the MTEP 

antagonist. Some 

molecules will be 

increased while others 

will be decreased. 

Figure from Levenga, 

de Vrij et al. (2010) 

Figure J. Intracellular 

signaling pathways 

activated by mGlu5 

receptors. Pink X shows 

the expected effect of 

blocking with the MTEP 

antagonist. Some 

molecules will be 

increased while others 

will be decreased. 

Figure from Levenga, 

de Vrij et al. (2010) 
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have no effect on interneurons in controls, because these receptors are not active on 

controls.  Therefore treatment should be selective on extra function in PMR.  
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Chapter 2 

Potential Treatments for Malformation Associated Epilepsy 

2.1: Hypothesis and Objectives 

Polymicrogyria, a developmental cortical malformation, can cause intractable 

epileptic seizures in affected individuals. This disorder has a lack of therapeutic 

treatments and drives a need to determine the underlying cellular mechanisms of cortical 

malformations also causing intractable seizures.   

These studies utilize a freeze-lesion model for polymicrogyria in transgenic mice 

that selectively express ChR channels on a particular interneuron cell type. These cells, 

within an epileptogenic area adjacent to the malformation known as the paramicrogyral 

region, are thought to be functionally altered as compared to control cortex, and have 

been shown to contribute to the epileptiform activity seen in the PMR/FL mice. Past 

studies have implicated the mGluR5 receptor as the cause of the over activation of these 

SS interneurons. This mGluR5 receptor is enhanced in its expression on SS interneurons 

in the PMR region, but not in control tissue.  

We hypothesize that blockade of the mGluRs will decrease the activity of SS 

interneurons and thereby prevent the generation of epileptiform activity and increased SS 

output in malformed cortex. With the following series of experiments, we assessed this 

by: 

1. Evaluating if the drug-treated mice (GBP or MTEP) showed suppressed 

epileptiform fields in drug-treated PMR vs drug-treated sham-lesioned control 

animals.  
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2. Evaluating the output of the SS interneurons in our 4 treatment groups 

(control-GBP, PMR-GBP, control-MTEP, PMR-MTEP) via whole cell patch 

clamping of pyramidal neurons with the use of optogenetics.  

All recordings were taken from pyramidal neurons in the designated PMR region 

or homologous control cortex.  

2.2: Materials and Methods 

Mice 

In order to achieve the ChR expression on SS interneurons, we crossed Floxed 

stop codon on a ChR-2 expressing gene in YFP reporter female mice with Cre 

recombinase in the 3' UTR of the somatostatin locus males. This allowed for the selective 

genetic insertion of ChR into SS interneurons, subsequently allowing activation of the SS 

interneurons with blue light application. Mice are housed in IACUC approved housing 

and all procedures and protocols are IACUC approved.  

FL surgery 

On postnatal day 1, aseptic surgery techniques were followed to induce the 

transcranial freeze lesions. SS-ChR2-EYFP mice were anesthetized by being placed in 

ice for 3 minutes to induce hypothermia. A coronal incision was made across the skull to 

expose it. A frozen probe consisting of a copper bar with a 0.1mm pointed tip cooled with 

dry ice to -55˚C was placed on the surface of the skull for 5 seconds on each hemisphere 

(bilateral lesion) approximately 0.5 mm from the midline. After surgery, the incision was 

sutured on the center and Vetbond glue was applied to the rest of the incision. Antibiotic 

ointment was then applied to the whole suture and the mice were then placed in a heating 

blanket and allowed to re-warm to normal body temperature. Pups were then returned to 
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their mother. The pups were weighed for five days following the surgery to ensure they 

gained weight and therefore had a proper recovery.  

 

SHAM surgery 

This surgery comprised of the same series of events as the FL surgery, however, 

instead of the freezing probe cooled to -55˚C, the probe was room temperature.  

Drug administration 

Freeze-lesioned and control (sham-lesioned) mice were all given one of two 

drugs, MTEP or Gabapentin. From postnatal day 1 through postnatal day 7 (P1-P7), the 

MTEP groups were given daily i.p. injections (at the same time each day) at a 

concentration of 10 mg/kg MTEP. For the GBP groups, the same protocol was followed 

(daily i.p. injections from P1-P7) at a concentration of 200 mg/kg. Because only a small 

volume can be injected into mice pups, for drug injections, the volume was held constant 

(within a small range) while the mg/ml of the drugs were varied according to animal 

weight. For MTEP a volume of 0.02 mls was used. Due to the lower solubility of GBP, it 

was necessary to vary this from 0.02 ml for P1-3, 0.03 for P3-5; and 0.04 for P5-7. 

Brain extraction and slice preparations 

Mice were anesthetized with isoflurane in a small chamber. Once overdosed, they 

were decapitated. After decapitation, the brain was excised and quickly removed and 

placed into cold (-18˚C) sucrose slicing solution containing (in mM): (2.5 KCl, 1.25 

NaH2PO4, 10 MgCl2, 0.5 CaCl2, 26 NaHCO3, 234 sucrose, 11 glucose). The brain was then 

transferred to a flat surface and sliced mid-sagittally. One side of the brain was frozen 
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and stored in a -80˚C freezer to save for later determination of mGluR5 protein levels in 

the brain tissue using Western blot techniques. The other half was placed on the 

vibratome stage and 300 µm coronal slices from the somatosensory cortex were taken 

using a 1000 plus vibratome. Slicing occurred while the brain was in the sucrose slicing 

solution. Somatosensory cortex was confirmed by using hippocampal morphology 

Figure K. Images from the 

Allen Brain atlas showing the 

location of primary 

somatosensory cortex (dark 

green, arrows).  Website: © 

2015 Allen Institute for Brain 

Science. Allen Mouse Brain 

Atlas [Internet]. Available 

from: http://mouse.brain-

map.org. Because there is far 

less somatosensory cortex 

present in sections with 

ventral hippocampus, only 

slices anterior to this level 

(equivalent to top and middle 

image) were used for both 

field potential and patch 

clamp recordings. 

Figure K. Images from the 

Allen Brain atlas showing the 

location of primary 

somatosensory cortex (dark 

green, arrows).  Website: © 

2015 Allen Institute for Brain 

Science. Allen Mouse Brain 

Atlas [Internet]. Available 

from: http://mouse.brain-

map.org. Because there is far 

less somatosensory cortex 

present in sections with 

ventral hippocampus, only 

slices anterior to this level 

(equivalent to top and middle 

image) were used for both 

field potential and patch 

clamp recordings. 

http://mouse.brain-map.org/
http://mouse.brain-map.org/
http://mouse.brain-map.org/
http://mouse.brain-map.org/
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(Figure K). After slicing, the slices were transferred to a warmed holding chamber filled 

with artificial cerebral spinal fluid (aCSF) infused with 95% O2/5% CO2 to maintain pH.  

ACSF is comprised of (mM): 126 NaCl, 3.5 KCl, 1.25 NaH2PO4, 1.0 MgSO4, 1.2 CaCl2,10 

glucose, and 26 NaHCO3. Slices remained in the heated chamber of 34˚C for 25 minutes, 

after which the heater was turned off and the slices cool to room temperature over 20-30 

minutes. Slices were kept at room temperature until used for the patch and field 

recordings. 

Patching and Field recordings  

Before recording, the slices were transferred from the room temperature bath into 

the recording chamber with continuously flowing aCSF (~300 mOsm) infused with 95% 

O2/5% CO2 that was heated to 32˚C. In all instances, the aCSF contained 50 μM 2-amino-

5-phosphonopen- tanoic acid (APV), an NMDA antagonist, and 20 μM 6,7-

Dinitroquinoxaline-2,3-dione (DNQX), an AMPA and kainate antagonist. A high 

chloride intracellular solution was used (in mM: 70 K-gluconate, 10 Hepes, 4.0 EGTA, 

70 KCl, 4.0 Na- ATP, and 0.2 Na-GTP) in the glass pipette for the pyramidal recordings 

(~3-5 mOhms). Osmolarities and pH of both intracellular solutions were adjusted to 280-

290 mOsm and pH 7.3. Biocytin (0.5%) was included in recording pipettes to confirm 

neuronal morphology post-experiment via subsequent staining (25mg of biocytin was put 

into 5mL of high Cl- solution).  

In malformed cortex, the sulcus could be easily visualized under standard DIC 

optics. In these slices recording locations were chosen within the PMR, 0.25 – 0.5 mm 

adjacent to the sulcus or for controls, in homologous cortex (see Figure 1).  In all cases 

the recording location was within somatosensory cortex. 
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In the patch clamping experiments, an electrical stimulus was applied 100-150 μm 

lateral to the patched cell using a glass pipette filled with 1 M NaCl. Optical stimulation 

of the pyramidal cells was achieved using X-cite and XLED1 software (Lumen 

Dynamics) with the light applied through the 60X objective. To activate ChR expressing 

SS interneurons, a wavelength of 460 nm was used at an intensity of 100% (Figure L). 

Figure L. Cartoon illustrating the orientation of and interactions between three 

cortical neuronal subtypes discussed in this manuscript. SS are the normally weak 

or modulatory, dendrite-targeting inhibitory interneurons that have ChR 

genetically inserted to produce depolarization when blue light is applied B). PV 

are powerful inhibitors synapse on somata and preventing horizontal propagation 

of excitatory activity. Pyr = pyramidal neurons that are the main excitatory 

elements within the cortex. They have long apical dendrites. The layer V pyramidal 

neurons have axons that project not only subcortically, but also intracortically 

over long horizontal distances, particularly within layer V. The other green 

synapses (onto pyr) indicate thalamocortical and callosal excitatory afferents. 

Cartoon developed and modified by KM Jacobs. Here shown modified from that 

presented in Nicole Ekanem’s Masters’ thesis. 

Figure L. Cartoon illustrating the orientation of and interactions between three 

cortical neuronal subtypes discussed in this manuscript. SS are the normally weak 

or modulatory, dendrite-targeting inhibitory interneurons that have ChR 

genetically inserted to produce depolarization when blue light is applied B). PV 

are powerful inhibitors synapse on somata and preventing horizontal propagation 

of excitatory activity. Pyr = pyramidal neurons that are the main excitatory 

elements within the cortex. They have long apical dendrites. The layer V pyramidal 

neurons have axons that project not only subcortically, but also intracortically 

over long horizontal distances, particularly within layer V. The other green 

synapses (onto pyr) indicate thalamocortical and callosal excitatory afferents. 

Cartoon developed and modified by KM Jacobs. Here shown modified from that 

presented in Nicole Ekanem’s Masters’ thesis. 
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These wavelengths were applied through a 60X objective either above the patched cell or 

100-150 μm lateral to the patched cell above the stimulating electrode, which was a 

second condition recorded. MultiClamp 700B Amplifier (Molecular devices) was used 

and the signal was digitized with pClamp software and a Digidata1440A (Axon CNS 

Molecular devices).  

For field potentials not requiring optical stimulation, the recording electrode was 

filled with either aCSF or 1 M NaCl. In these experiments, a stimulating electrode was 

placed in layer V and a recording electrode was placed in layer II/III. An ER1 amplifier 

(Cygnus Technologies) was used and the signal was digitized with pClamp software and 

a Digidata 1322A (Molecular Devices). 

Protocols 

Utilized protocols were as follows: (1) A series of increasing light durations in 

milliseconds (0.1, 0.2, 0.3, 0.4, 0.5, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2) was applied to determine 

the effectiveness of SS interneurons in producing IPSCs within the recorded pyramidal 

neuron with blue light alone. The series was repeated for a total of 3 presentations. The 

responses were averaged across the 3 presentations prior to measuring amplitude, 

duration, and area of the light-evoked inhibitory postsynaptic current (IPSC). Finally in 

cells, (2) the recording was switched from voltage clamp to current clamp mode and a 

series of hyperpolarizing and depolarizing steps applied (400 msec duration, beginning at 

-200 pA and stepping at 10 pA for a total of 70 steps), in order to measure intrinsic and 

cellular properties, and confirm the electrophysiological cell type. 

Field potential recordings were made in layers II/III, directly above an electrical 

stimulating electrode located in deep layers. Care was taken to make sure that recording 



www.manaraa.com

37 

 

and stimulating electrodes were vertically aligned and perpendicular to a tangent at the 

pia above the recording site. Threshold current level in these experiments was that 

evoking a short latency negative field of 0.2 mV peak amplitude with an electrical 

stimulus of 0.02 msec duration. (3) An Epitest at half-threshold (10 sec between stimulus 

presentations) was then run to test the incidence of epileptiform activity, 10 stimulus 

presentations at half-threshold current were given. (4) Then, an Epitest exactly as that 

described above, except at threshold intensity was run. (5) An intensity series was applied 

by maintaining the current while varying the duration of the electrical stimulus (0.02, 

0.04, 0.08, 0.16, 0.32 msec), with the series repeated three times.  (6) Lastly, a paired 

pulse stimulation was applied with paired electrical stimulations at varying durations of 

electrical stimulation (0.02, 0.04, 0.08, 0.16, 0.32 msec). Because slice health varies, for 

field potential recordings in order to be included for analysis, the slice had to meet three 

criteria: a) A threshold current of 10 mA or less; b) an increasing peak amplitude of the 

short latency field negativity with increasing stimulus intensity; and c) at maximum 

stimulus intensity, the short latency field negativity must have a peak amplitude of at 

least 0.6 mV. Over many years the Jacobs’ lab has found these to be reliable criteria for 

detecting slice health.  For patch clamp experiments, mostly the visual appearance of the 

neurons was used as an indicator of health, where unhealthy slices had many cells with 

swollen soma, nuclei positioned to the side of the slice and unclear membrane borders. It 

is not possible to obtain patch clamp recordings from this type of unhealthy neurons, thus 

other criteria thus far have been unnecessary. 
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Immunohistochemistry 

Field potential and patch clamp slices were immediately placed in 4% 

paraformaldehyde for 24 hours after recording. After this 24 hour period, slices were 

placed in phosphate buffer saline (PBS) until staining. Whole-cell patch clamp slices with 

biocytin-filled cells were stained with Avidin (1:500 Texas Red conjugate, Life 

Technologies) or with Avidin and NeuN (mouse anti-NeuN conjugated with Alexa Fluor 

488, Chemicon MAB377X). Images of the stained pyramidal cells were taken with the 

Zeiss LSM 710 confocal laser scanning microscope. Microscopy was performed at the 

VCU Microscopy Facility, supported, in part, by funding from NIH-NCI Cancer Center 

Support Grant P30 CA016059. Images of the slices stained with Avidin and NeuN were 

obtained with the Scope A1 microscope (Zeiss) and Image Pro Premiere 9.1 (Media 

Cybernetics).  

Data analysis 

Data was analyzed using Clampfit (Axon Instruments) and home-written macros 

in Microsoft Excel. Data are presented as mean ±SEM. Statistical analysis was performed 

with two-way repeated measures ANOVAs SPSS software (IBM), for measures across 

intensity series and with z-tests for measures of proportion. For the 2-way ANOVAs, 

stimulus intensity was the repeated measure, and subject group was the second measure. 

In all cases, significance was set to p<0.05. Throughout the results the current data is 

compared to that from untreated animals (both naïve controls and PMR).  In all cases all 

data from untreated animals was collected by Nicole Ekanem and Laura Reed and was 

presented in a preliminary form in the Masters’ thesis of Nicole Ekanem (2015). 
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Chapter 3 

Results 

3.1 Freeze-lesion histopathology not changed by drug administration 

To determine whether the application of drugs altered the cortical lamination 

of either control or the histopathology of the PMR, slices were 

immunohistochemically stained for NeuN. Slices were chosen that contained anterior 

to approximately mid-way through the dorsal hippocampus, as these slices contained 

the most primary somatosensory cortex (top two pictures in Figure K). After treatment 

with either MTEP or GBP, the cortical lamination was similar to that in sections from 

untreated mice, as shown in Figure 1. In control, sham-lesioned mice, the normal six 

layers of neocortex were visible in sections through somatosensory cortex (Figure 1 

D-F). In freeze-lesioned mice, sections showed the abnormally-laminated microgyrus 

Figure 1. Lamination within somatosensory cortex for both malformed (A-C) 

and control brains (D-F), identified with NeuN staining. In each case the red 

outlined box shows approximate recording location, with layers indicated. For 

malformed brains, location is within the PMR, 0.25 – 0.5 mm adjacent to the 

sulcus. A) Non-drug FL; B) MTEP FL; C) GBP FL; D) non-drug naïve control; 

E) MTEP sham; F) GBP sham. Scale bar in F for A-F = 0.2 mm. 
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and adjacent six-layered PMR region within somatosensory cortex. Treatment with 

either MTEP or GBP did not qualitatively change the histopathology nor the 

cytoarchitecture of the adjacent, six-layered PMR region from which recordings were 

made (Figure 1 A-C). 

3.2 Network activity measured with field potential recordings 

To determine if the treatments with either MTEP or GBP affected the network 

excitability, field potential recordings were made from layer II/III during stimulation of 

deep layers directly beneath the recording site within somatosensory cortex and the PMR 

(~0.5 mm adjacent to the sulcus). Under these conditions threshold level is determined by 

adjusting the current level applied with a 0.02 msec pulse until a short latency negativity 

of 0.2 mV peak amplitude is obtained. A test for epileptiform activity was then performed 

by presenting 10 stimuli (10 sec interval) at half-threshold and subsequently repeating this 

at threshold. While an objective quantifiable epileptiform detection system is desirable and 

under development in the Jacobs lab, it was not available to assess these data.  Instead, the 

expertise of the lab PI (KM Jacobs) was used to identify the presence of epileptiform 

activity, which has the following characteristics: 1) all-or-none behavior (that is, it is not 

graded with stimulus intensity); 2) variable form; 3) variable latency; 4) typically long 

latency relative to that of the short latency response which does vary with stimulus 

intensity. Only polyphasic deflections at least 2 x the baseline noise were identified as 

epileptiform events (Figure 2). Ictal (seizure) –like activity has a large slope and short time 

to peak, extremely short peak and often repeated instances of these ictal ‘spikes’. In 

contrast, interictal-like activity is typically lower in amplitude with a much more slowly 

rising peak, a longer duration peak, and greater presence of polyphasic activity. For all 
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subject groups studied here, in most cases the epileptiform activity observed was interictal-

like, although there were a few instances of ictal-like activity (Figure 2 C, I). In the 

Figure 2. Examples of epileptiform activity evoked with low stimulus intensity for 

different subject groups. Small blue arrows indicate time of stimulation. In all 

cases the black trace is an example of epileptiform activity; and the thinner gray 

trace shows a non-epileptiform response to the same stimulus presentation (from 

the same file). This demonstrates the all-or-none behavior of the epileptiform 

activity. A, B) Non-drug-treated controls from two different animals (A and B). 

Some epileptiform activity in controls is normal for this age group (P12-21 in 

rodent). C, D) Non-drug-treated PMR responses were typically larger than those 

observed in controls. C and D from two different animals. E) MTEP-treated sham 

control. F) MTEP-treated PMR. For all responses from MTEP-treated mice, 

epileptiform activity was qualitatively similar to that in un-treated controls. G) 

GBP-treated sham control. H, I) GBP-treated PMR. Ictal-like activity was 

observed only in non-drug-treated PMR (C) and in GBP-treated PMR (I). Vertical 

scale bar = 0.15 for A-H; and 0.45 for I. 
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counting of instances of epileptiform activity, both ictal-like and interictal-like were 

counted as epileptiform activity. 

In untreated mice, even controls within the age group tested (P21-21) normally 

have some hyperexcitability (Luhmann and Prince 1990). However in untreated 

freeze-lesions, the incidence of epileptiform activity is much higher within the PMR 

than in homotopic regions of control cortex, whether measured per mice or per slice 

(Figure 3). Surprisingly, controls treated with MTEP had a high rate of epileptiform 

activity incidence, similar to untreated PMR mice. The epileptiform incidence per 

slice from PMR mice treated with MTEP was significantly lower than that for slices 

from the control-MTEP-treated mice (Figure 3B, z-test, p<0.05). In addition, the 

epileptiform incidence per slice was significantly lower for PMR-MTEP compared to 

that in the PMR-untreated group (one-tailed z-test, p<0.05; with two tails, p =0.08). 

Here a one-tailed test was applied because of the expectation that the treatment would 

reduce the epileptiform incidence. 

For treatment with GBP, incidence of epileptiform activity per slice was 

similar to that in slices from untreated mice. That is, control-GBP was similar to 

untreated controls and PMR-GBP was similar to untreated PMR. Like their untreated 

counterparts, for GBP-treated mice the epileptiform incidence per slice was 

significantly higher for PMR compared to control mice (z-test, p<0.05). 

When epi incidence was examined per mouse, although the bars appear higher 

for all drug-treated animals, the incidence was not significantly different from 

untreated controls (z-tests, p>0.05), likely due though to low subject numbers.  In 

future experiments, we expect to obtain at least 9 mice per group. 
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3.3 Pyramidal neuron identification/differentiation  

Neuronal morphology 

To choose the neurons from which recordings would be made, the patch 

electrode was first directed to layer V under low power. It was expected (and 

subsequently confirmed) that layer V would make up the 3rd quadrant deep to the pia. 

Under high power and DIC optics, the desired pyramidal neurons were identified 

morphologically as the ones having large soma; but were most easily distinguished by 

the large apical dendrite that extended to superficial layers. No other cell types has this 

apical dendrite. These morphological characteristics were confirmed for some neurons 

with post-hoc avidin staining of the biocytin that had diffused into the cell via the 

patch pipette, during the recording (Figure 4). It is possible that FL and/or drug-

treatment will change detailed characteristics of the pyramidal neuron morphology 

such as branch length or number. However the main characteristic of the apical 

dendrite was confirmed for at least some neurons in all subject groups (Figure 4). 

Figure 3. Incidence of evoked 

epileptiform activity recorded 

from field potentials in ex vivo 

slices and analyzed both per 

mice (A) and per slice (B). 

Subject group is indicated 

under each bar. The number of 

either mice (A) or slices (B) is 

shown in the bar for each 

subject group. * = z-test, 

p<0.05. To truly evaluate the 

per mice results, likely 

additional subjects must be 

investigated. 
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3.4 Optogenetic activation of IPSCs from tissue containing ChR in SS interneurons 

        When blue light was applied via an LED (bLED) through the 60X objective, in 

tissue containing ChR in SS interneurons, IPSCs were evoked in pyramidal neurons 

Figure 4. Confirmation of pyramidal neuronal type for recorded neurons. Biocytin 

was included in the recording pipette and its presence subsequently identified in the 

fixed tissue with the application of a fluorescent avidin to which the biocytin binds. 

Here the large somal size and presence of an apical dendrite (indicated with pink 

arrows) projecting toward the pia (yellow arrow) indicate that these are pyramidal 

neurons. Not every recorded neuron can be labeled, but these examples indicate that 

the neurons targeted in the live slice were correct. Images were taken as maximum 

projections after a depth profile on a Zeiss confocal microscope. A) Non-drug 

control; B) GBP-FL; C) Non-drug FL; D) GBP-sham control. Scale bar in D for A-D 

= 0.02 mm. 



www.manaraa.com

45 

 

(Figure 5). Responses were evoked at a relatively short latency and in a graded fashion.  

That is, increasing the duration of the light to produce a more intense stimulus caused an 

increase in the peak amplitude of the IPSCs for all subject groups (shown for MTEP- and 

GBP-treated animals in Figure 5). IPSCs were qualitatively similar between all subject 

groups. 

3.5 The effect of MTEP treatment on SS-ChR IPSCs in control cortex 

Does MTEP treatment change the SS-ChR IPSC in controls? 

For all studies on the IPSCs three measures will be presented: peak amplitude; 

area of the significant response (defined as two standard deviations above the mean of 

the baseline, which is the region prior to stimulation for each voltage clamp 

Figure 5. Examples of IPSCs evoked by the application of blue light (bLED) in tissue 

with ChR in SS interneurons. Recordings are from pyramidal neurons during 

activation of SS inhibitory interneurons. A) Sham-injured mouse treated with MTEP; 

B) FL mouse treated with MTEP, with recordings made within the PMR; C) Sham-

injured mouse treated with GBP; D) FL mouse treated with GBP, with recordings 

made within the PMR. Three intensities are shown: for A & B: 0.3 (brown), 0.4 

(green), and 0.8 (blue) msec of light; and for C& D: 0.3 (brown), 0.5 (green), and 0.8 

(blue) msec of light. 



www.manaraa.com

46 

 

recording); and duration of the significant response. Each measure is plotted against 

the 11 stimulus intensities (duration of bLED in msec). The plots for the comparison 

between untreated controls and MTEP-treated controls are shown in Figure 6. To test 

for significant differences, a 2-way repeated measure ANOVA was used with stimulus 

intensity as the repeated measure. For this comparison, recordings were made from 19 

untreated control and 11 control – MTEP treated neurons. There was no significant 

effect of subject group or stimulus intensity, however there was a significant 

interaction of these two (p=0.01, see Table 1, where all p values are reported for 

comparisons shown in Figs. 6-9). For post hoc analyses of the interaction between 

subject group and stimulus intensity, in all cases a 1-way ANOVA was performed at 

Figure 6. Comparison of the SS-ChR 

evoked IPSC between untreated 

(naïve) controls (black, N = 19) and 

MTEP-treated sham-injured controls 

(purple, N = 11). Does MTEP alone 

have an effect? IPSCs were recorded 

in layer V pyramidal neurons in 

tissue with ChR selectively in SS 

interneurons. Stimulus intensity was 

generated via increasing durations of 

bLED. The IPSC peak amplitude (A), 

area of significant response (B), and 

duration of significant response (C) 

are shown here. Significance was 

tested with a 2-way repeated 

measures ANOVA.  For peak and 

area, there was no significant 

difference between subject groups 

and no significant interaction 

between subject groups and stimulus 

intensity.  * = significant difference 

assessed with post hoc analysis. See 

text and Table 1 for all p values. 
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each stimulus intensity, with the p value adjusted with a Bonferroni correction 

(0.05/number of comparison tests). In this case there were 11 stimulus intensities, so 

in order to reach significance at any one level, the p value had to be less than 0.045 

(0.05/11). After applying these criteria, there was no significant difference in the peak 

IPSC between control-untreated and control-MTEP at any stimulus level. 

The area of the IPSC was not significantly different for MTEP-treated 

compared to untreated controls, there was also no effect of stimulus intensity and the 

interaction was also not significant (see table 1). For IPSC duration, there was an 

effect of group, an effect of stimulus intensity, and an interaction (p<0.05). To further 

examine the interaction, 1-way ANOVAs were performed at each level, with a 

Bonferroni adjustment to the p value needed for significance.  After applying this 

correction, there was a significant difference between control-untreated and control-

MTEP only at 0.2, 0.3 and 0.4 msec stimulus intensity levels, as shown by asterisks in 

Fig. 6. 

3.6 Does MTEP prevent the PMR-associated increase in SS-ChR IPSC peak? 

To determine if MTEP could prevent the PMR-associated increase in the peak 

of the IPSC evoked with optogenetic activation of SS interneurons, we first compared 

the results between control-MTEP and PMR-MTEP groups. Should MTEP be 

effective, it was expected that there would no longer be a significant difference 

between control and PMR when both were treated with MTEP. That was in fact the 

case, based on a 2-way ANOVA for just these groups (subject groups N.S. different, 

p>0.05). However it is possible that even without a significant difference that MTEP 

was not returning the SS interneuron output to the normal (untreated control) levels.  
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To examine this further, the results for four groups: control-untreated (19 

neurons), PMR-untreated (14 neurons), control-MTEP (11 neurons) and PMR-MTEP 

(11 neurons, see Figure 7) were compared. For IPSC peak, although there was no 

effect of subject group with the 2-way repeated measures ANOVA, there was a 

significant effect for stimulus intensity and a significant interaction between stimulus 

intensity and subject group (p<0.05). To determine which subject groups were 

significantly different for which intensities, 1-way ANOVAs with Bonferroni 

correction to the p-value were used (as described above). This analysis showed a 

significant group effect for three intensities: 0.2, 0.3, and 0.4 msec. Bonferroni post  

 

 

Figure 7. Does MTEP prevent 

the enhanced SS-ChR IPSC 

associated with the PMR? All 

features are the same as for 

figure 6, with 14 PMR-

untreated neurons and 11 PMR-

MTEP neurons. There was a 

significant interaction between 

subject group and stimulus 

intensity on all measures (two-

way repeated measures 

ANOVA, p<0.05).  MTEP 

treated groups were larger than 

untreated groups at low 

intensities. See text and Table 1 

for further explanation of 

significant effects. 
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hoc analysis of this result showed that the PMR-MTEP group was significantly larger 

than the control-untreated and PMR-untreated groups at all three intensities. 

It is however clear that to draw firm conclusions, additional data will be 

necessary, given the large error bars and low power (see power in Table 1) associated 

with the current data. Results for IPSC area were similar to those for IPSC peak with 

significant effects of stimulus intensity and the interaction between subject group and  

stimulus intensity. The post hoc analysis showed that only at 0.2 msec was there a 

significant difference, where PMR-MTEP was once again greater than both control-

untreated and PMR-untreated. For the IPSC duration the results were similar to that 

for peak.  The 2-way repeated measures ANOVA showed a significant effect of 

stimulus intensity and a significant interaction between subject groups and stimulus 

intensity. Post hoc analyses at each intensity showed a significant group effect only for 

the 0.2 and 0.3 msec stimuli. At those levels, the PMR-MTEP group was greater than 

both the control-untreated and the PMR-untreated groups.  In addition, the control-

MTEP group was also greater than the PMR-untreated group at both intensities and 

greater than the control-untreated group at 0.2 msec. 
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3.7 The effect of GBP treatment on SS-ChR IPSCs in control cortexTo determine 

if the second potential treatment, that with GBP had a direct effect on the SS-ChR 

IPSC, we compared the untreated controls to the GBP-treated controls (Figure 8). We 

again used a 2-way repeated measures ANOVA to test for significant differences (N = 

19 and 7 neurons for untreated and GBP). There was no significant effect of subject 

group and no significant interaction, but there was a significant effect of stimulus 

intensity (p<0.05). The same was true for measures of IPSC area and duration, where 

there was no significant difference between control-untreated and control-GBP and no 

significant interaction between stimulus intensity and subject group, but there was a 

significant effect of stimulus intensity. 

 

 

 

Figure 8. Does GBP affect the 

SS-ChR IPSC in control cortex? 

Untreated controls in black (N 

= 19) and GBP-treated controls 

in blue (N = 7). Measures of 

peak (A); area (B); and 

duration (C) of the IPSC are 

shown. A 2-way repeated 

measures ANOVA was used to 

test for significance. There was 

a significant effect of stimulus 

intensity only, for all three 

measures. 
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3.8 Does GBP prevent the PMR-associated increase in SS-ChR IPSC peak?  

To determine if GBP could prevent the PMR-associated increase in the peak of 

the IPSC evoked with optogenetic activation of SS interneurons, we first compared the 

results between control-GBP and PMR-GBP groups. Should MTEP be effective, it 

was expected that there would no longer be a significant difference between control 

and PMR when both were treated with GBP. That was in fact the case, based on a 2-

way ANOVA for just these groups (subject groups N.S. different, p>0.05). However it 

is possible that even without a significant difference that GBP was not returning the 

SS interneuron output to the normal (untreated control) levels.  

To examine this further, the results for four groups: untreated controls (19 

neurons), untreated PMR (14 neurons), control-GBP (7 neurons) and PMR-GBP (11 

neurons, see Figure 9) were compared. For IPSC peak, although there was a 

significant effect of subject group with the 2-way repeated measures ANOVA, there 

was a significant effect for stimulus intensity and also a significant interaction 

between stimulus intensity and subject group (p<0.05). Once there is an interaction, 

we have investigated this statistically, rather than examining the differences between 

subject groups. Post hoc analyses of the interaction were performed as described 

above, with 1-way ANOVAs at each intensity, with a Bonferroni correction applied to 

the p value. For peak IPSC, there was a significant group effect at stimulus intensities 

0.2, 0.3 and 0.4 msec. At these levels the PMR-GBP group was significantly larger 

than both control-untreated and PMR-untreated groups.  In addition, the control-GBP 

group was significantly larger than the PMR-untreated group at the 0.3 msec stimulus 

intensity. 
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For the area of the IPSC, there was an effect of stimulus intensity and an 

interaction between subject group and stimulus intensity. Post hoc analysis using 1-

way ANOVAs with Bonferroni correction applied to the p-value showed a significant 

effect of group for intensities 0..1, 0.2 and 0.3 msec. At these intensities, the PMR-

GBP group was significantly larger than control-untreated and PMR-untreated groups. 

In addition at the 0.2 msec level, the control-GBP group was significantly larger than 

PMR-untreated group. 

For the duration of the IPSC, the 2-way repeated measures ANOVA showed an 

effect of subject group, stimulus intensity and a significant interaction between these 

two. We again focused on the interaction to further understand these results. Post hoc 

analyses of 1-way ANOVAs at each stimulus intensity with Bonferroni correction 

applied to the p value, showed significant group effects at the 0.2, 0.3, and 0.4 msec 

levels. At these levels, the PMR-GBP group was significantly larger than both the 

control-untreated and the PMR-untreated groups.  In addition, at the 0.2 and 0.3 levels, 

the control-GBP was also significantly larger than both the control-untreated and 

PMR-untreated groups. It is however still clear that to draw firm conclusions, 

additional data will be necessary, given the large error bars and low power (see Table 

1) associated with the current data. 
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3.9 Is GBP more effective than MTEP in reducing the SS-ChR IPSC?  

While it is clear that for all four drug-treated groups additional neurons are 

needed to complete this project, here we attempted to compare the GBP and MTEP 

effects for this preliminary form of the data. To make direct comparisons of the effect 

of the drug on the PMR-associated changes, all PMR data was normalized to the mean 

of its respective control. For instance, each untreated PMR peak IPSC value was 

divided by the mean of the untreated control peak IPSC. This was repeated for MTEP 

and GBP groups. Thus for any given value if the PMR IPSC value was equal to that of 

the control, this procedure would yield a normalized value of 1. The results for the 

three measures of peak, area, and duration of the IPSC are shown in Figure 10. For 

Figure 9. Does GBP prevent 

the enhanced SS-ChR IPSC 

associated with the PMR? All 

features are the same as for 

figure 8, with the addition of 14 

PMR-untreated neurons and 11 

PMR-GBP neurons. There was 

a significant interaction 

between subject group and 

stimulus intensity on all 

measures (two-way repeated 

measures ANOVA, p<0.05.  See 

text and Table 1 for further 

effects. 
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the untreated group, the peak and the area of the IPSC was 3-4 times that of control on 

intensities of 0.5 msec and greater. In contrast, for both MTEP and GBP, the values 

were between 1 and 2 on the normalization scale, further demonstrating the lack of 

difference between control and PMR in the drug-treated groups. This figure shows that 

MTEP and GBP were not significantly different in their effectiveness. To test for 

significance, 2-way repeated measures ANOVAs were again used. The p values and 

observed power for this data is reported in Table 2. 

 

Figure 10. All PMR data 

normalized to their respective 

controls. MTEP and GBP are 

equally effective in reducing the 

enhanced SS-ChR IPSC in 

malformed brain. Measures of peak 

(A), area (B) and duration (C) 

shown. Untreated in green (N = 

14); MTEP in pink (N = 11); and 

GBP in blue (N=11). See Table 2 

for 2-way repeated measures 

ANOVA p values and observed 

power for the data shown here. 
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Table 1. p values and observed power in parentheses for all comparisons tested with a 

2-way repeated measures ANOVA shown in figures 6-9. Comparison groups are listed 

from left to right. IPSC measures of peak, area and duration are listed from top to 

bottom, respectively. Significant differences (p<0.05) shown in red. For these 

comparisons, N = 19 untreated control, 14 untreated PMR, 11 control-MTEP, 11 PMR-

MTEP, 7 control-GBP, and 11 PMR-GBP 

Table 2. p values and observed power in 

parentheses for the comparisons shown in Fig. 

10 and tested with 2-way repeated measures 

ANOVA. These data were normalized to the 

mean of their respective controls. IPSC measures 

of peak, area and duration are listed from top to 

bottom, respectively. Significant differences 

(p<0.05) shown in red. For these comparisons, N 

= 14 PMR-untreated, 11 PMR-MTEP, and 

11PMR-GBP neurons. 
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  Chapter 4 

Discussion 

 

Epilepsy has been previously attributed to increased excitation or decreased 

inhibition. With this frame of mind, modern medicine has been unable to develop an 

effective permanent treatment against the mechanisms of epilepsy for some patients. In 

order to treat patients with intractable seizures, especially those caused by developmental 

malformations, it is essential to understand the entirety of mechanisms that could 

possibly play a role in the abnormal cortical function. Excitatory afferents are increased 

in the PMR due to the presence of the microgyrus (Jacobs and Prince 2005). This 

suggests that the hyperexcitability is caused by these extra glutamatergic synapses; 

however, the early susceptibility to excitation does not coincide with the increased 

excitation onto pyramidal neurons and may actually be caused by changes in inhibitory 

interneurons (George and Jacobs 2006, George and Jacobs 2011, Bell and Jacobs 2014). 

This suggests a role for GABAergic interneurons in epileptogenesis. Previous studies 

have shown that excitation persists even with enhanced inhibitory function suggesting 

that the inhibition is not decreasing excitation in the network; blocking of the inhibition 

causes a decrease in epileptiform activity in some epilepsies or conditions (Mann and 

Mody 2008).  It was shown that in the PMR region, SS interneurons have an increased 

output compared to PV interneurons (George and Jacobs 2011). In addition, it has been 

shown that the mGluR5 receptor is enhanced in its presence in the PMR region in FL 

animals as opposed to control on these SS interneurons.  

The overall goal of this study was to determine if blockade of the mGluR5 receptor 

would inhibit the output from SS interneurons and therefore decrease the overall 
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excitation seen in the FL model. With the use of field potential recordings and 

optogenetics with patch clamping the following observations were made:  

Patch clamping was used to measure the output of the SS interneurons by selectively 

activating them with blue light using optogenetics. Field potential recordings were used 

in order to determine the presence of epileptiform activity in our experimental groups. 

MTEP was used on PMR and SHAM mice in order to reduce the output from the SS 

interneurons by blocking the mGluR5 receptor, and therefore, the overall 

hyperexcitability seen in the FL model. GBP was used as a drug control and was also 

used to treat PMR and SHAM mice. GBP blocks the interaction of TSP and the α2δ-1 

receptor and therefore inhibits excitatory synapse formation.  

There was epileptiform activity seen in all groups, even in untreated mice. It is 

normal, however, for untreated mice to have a certain amount of epileptiform activity due 

to high concentrations of NMDA receptors and not fully developed GABAergic systems 

(Luhmann and Prince 1990).  

In untreated PMR mice, the incidence of epileptiform activity is higher within the 

PMR than in homotopic control cortex. This is similar to what’s seen in the rat FL model. 

This increased amount of epileptiform activity in the PMR mice compared to controls 

suggests a developmental change.  

Results also showed a high rate of epileptiform activity in MTEP SHAM mice 

compared to untreated PMR mice. The incidence of epilepsy per slice in MTEP PMR 

mice was lower than MTEP SHAM mice. This suggests that MTEP decreases 

epileptiform activity, however, it also suggests that MTEP affects another aspect of the 

brain due to the high rate of epileptiform activity in the MTEP SHAM mice compared to 
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untreated PMR mice. The fact that epi incidence in slices from MTEP PMR mice was 

decreased– especially as compared to untreated PMR mice – suggests that MTEP may in 

fact be effective in reducing the malformation-associated causes of hyperexcitability.  

MTEP-treated controls did not differ from the untreated controls in peak, area, or 

duration of IPSCs at the longer light durations. The only difference was seen in the initial 

intensities (0.2, 0.3, 0.4 msec) for the IPSC duration. For MTEP PMR and control vs 

untreated PMR and control, there was a significant interaction between the groups at 

intensities 0.2, 0.3, and 0.4 msec light duration for the peak, at 0.2 msec in the IPSC area 

for MTEP PMR vs untreated groups and 0.2 and 0.3 msec for IPSC duration for MTEP 

PMR vs untreated groups. We currently do not know why there is increased SS 

interneuron output at these low intensities, however, future studies will look into this 

aspect. Some potential causes of the increased output could be technical error, possible 

biological differences in current mice, or a biological change due to MTEP in the cortex 

or elsewhere.  

An explanation for the amount of epileptiform activity is possibly due to MTEPs 

role in excitatory or inhibitory neuron formation. When mGluR5 is knocked out, cortical 

excitatory neurons receive reduced inhibitory inputs into layer IV, suggesting a role for 

mGlu5 in the functional development of GABAergic circuits (Ballester-Rosado, Albright 

et al. 2010). Additionally, mGluR5 plays an important role in radial-glial-mediated 

neuronal guidance which is important for normal neocortical function (Louhivuori, 

Jansson et al. 2014) so the blocking of this receptor could have detrimental effects. They 

showed that the interruption of the mGlu5 receptor hinders the activity of the canonical 

transient receptor potential (TRPC) channel family which has been shown to mediate the 
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responses of growth cones to guidance cues through their control of calcium currents. 

This in turn effects radial glial mediated neuronal guidance and may have an impact on 

specific neurons that are in the layers of the neocortex (Louhivuori, Jansson et al. 2014). 

This could affect the formation of the PMR because of the formation of the microgyrus 

and subsequent redirected afferents.   

 The mGluR5 receptor on SS interneurons was specifically targeted due to 

previous work demonstrating its enhanced presence in the PMR, but not in control. 

Previous studies in our lab have shown that these SS interneurons are more active in the 

PMR region and could be the cause of the hyperexcitability caused by the synchronous 

firing of pyramidal neurons due to SS interneuron synchronous inhibition.  

The fact that GBP-treated SHAM were similar to untreated controls in their epi 

incidence suggests that GBP has no effect on normal network excitability. GBP also 

appeared to have no effect on FL-induced hyperexcitability, since GBP PMR was similar 

to untreated PMR mice. This, however, is opposite of what was found in Andersen 

(2014). What could explain the difference in results could be the age that lesions were 

done as well as the severity of the lesion. We do a bilateral lesion as compared to a 

unilateral lesion and our mice had the FL at age P1 instead of P0. Andersen (2014) found 

no difference in the amount of epileptiform activity in GBP treated FL animals compared 

to SHAM injured animals (Andresen, Hampton et al. 2014), concluding that GBP was 

able to reduce in vitro cortical hyperexcitability after an induced FL.    

The effects of GBP treatment showed significant effects at low intensities of IPSC 

peak, duration, and area in the GBP PMR group compared to the untreated groups. 

Again, it is not known why there is increased SS interneuron output at these low 
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intensities, however, future studies will look into this aspect. Additionally, there was no 

difference seen in the SS interneuron output in GBP PMR or GBP SHAM groups when 

compared.  

Translation and relevance of project:  

Current AEDs cause either a decrease in excitation, like GBP, or cause an increase in 

inhibition. Most AEDs work fairly well, but not all seizures are treatable with these 

AEDs. The alternative when AEDs do not work is invasive surgery. AEDs also generally 

have problems such as problematic drug interaction and other aversive side effects and do 

not work well in patients with PMG. Targeting the mGluR5 receptor is attractive due to 

the fact that this receptor is not normally expressed in high amounts in normal control 

tissue. Because of this, MTEP, an mGluR5 receptor antagonist, may not cause the 

extensive side effects as other AEDs. MTEP blockade of the mGlu5 receptor shows 

promise in its ability to decrease SS interneuron output, however, further experimentation 

is needed. This type of mechanism, if translatable to humans, could result in a successful 

treatment for previously intractable epilepsies associated with developmental 

malformations.  

These experiments showed that there is a possible role of the mGluR5 in the decrease 

in epileptiform activity caused by developmental malformations, however, additional 

drug experiments need to be done to determine MTEP’s efficiency in aiding in this 

process.  
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Further directions: 

Further investigation into the mechanisms of SS interneuron maturation will help 

further narrow down the areas to which treatments can be applied. One possibility is 

different maturation times. Knowing the mechanisms of SS interneuron maturation would 

be a helpful study in order to determine why they have increased expression of mGluR5.  

Further studies involving the drug, rapamycin, an mTOR pathway inhibitor, would be 

a promising next step. The mTOR pathway is one of many pathways activated by the 

mGlu5 receptor. MTOR is a rapamycin-sensitive serine-threonine kinase that plays a role 

in mRNA translation initiation, consequently affecting cell growth, dendritic arborization, 

neuronal morphology, proliferation, and cortical development (Meyuhas 2000, Chen, 

Atkins et al. 2007, Nguyen, Brewster et al. 2015). Due to MCDs being linked to problems 

in genes encoding known regulators of the mTOR pathway, blocking this pathway seems 

to be a logical step in potential treatments (Nguyen, Brewster et al. 2015). Because 

mGluR5 has been shown to be important in development, narrowing down treatment to a 

specific pathway activated by this receptor might be the key to a potential therapeutic 

treatment for intractable epilepsies in order for the partial function of this receptor to 

remain intact. Additionally, mTOR is a promising next step because some studies have 

shown that in seizures that are difficult to treat, MTEP’s use to block the mGlu5 receptor 

is ineffective (Witkin, Baez et al. 2008).  

There are many future directions to be taken in order to elucidate the role of mGluR5 

in the increased output from SS interneurons. Due to the complexity of the cascading 

pathways activated by this receptor, there needs to be further experimentation in order to 

determine a specific mechanism to control these SS interneurons.  
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